

Fig. 1. Perspective view of the molecule Mo(N₂)₂[PhP(CH₂-CH₂CH₂PPh₂)₂](PMe₃) [SCHAKAL drawing (Keller, 1981)].

References

- ANDERSON, S. N., HUGHES, D. L. & RICHARDS, R. L. (1984). J. Chem. Soc. Chem. Commun. pp. 958–959.
- ANTBERG, M. & DAHLENBURG, L. (1986). Angew. Chem. 98, 274–275; Angew. Chem. Int. Ed. Engl. 25, 260–261.
- CARMONA, E., MARIN, J. M., POVEDA, M. L., ATWOOD, J. L. & ROGERS, R. (1983a). Polyhedron, 2, 185–193.
- CARMONA, E., MARIN, J. M., POVEDA, M. L., ATWOOD, J. L. & ROGERS, R. (1983b). J. Am. Chem. Soc. 105, 3014–3022.
- DAHLENBURG, L. & PIETSCH, B. (1986). Z. Naturforsch. Teil B, 41, 70-75.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- KELLER, E. (1981). SCHAKAL. Ein FORTRAN-Programm für die graphische Darstellung von Molekülmodellen. Univ. of Freiburg.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- UCHIDA, T., UCHIDA, Y., HIDAI, M. & KODAMA, T. (1975). Acta Cryst. B31, 1197-1199.

Acta Cryst. (1986). C42, 997-999

Oligophosphine Ligands. XVIII.* Chlorohydrido[tris(3-dimethylphosphinopropyl)phosphine]ruthenium(II)

BY MARTIN ANTBERG AND LUTZ DAHLENBURG[†]

Institut für Anorganische und Angewandte Chemie der Universität, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, Federal Republic of Germany

(Received 10 February 1986; accepted 10 March 1986)

Abstract. $[Ru(Cl)(H){P[(CH_2)_3P(CH_3)_2]_3}],$ $M_r =$ 477.88, trigonal, space group $P3_2$ (or its enantiomorph P3,), a = 9.896 (3), c = 19.589 (5) Å,V =1661 (1) Å³, Z = 3, $D_x = 1.433$ g cm⁻³, λ (Mo K α) = $0.71069 \text{ Å}, \mu(\text{Mo } K\alpha) = 10.05 \text{ cm}^{-1}, F(000) = 744.$ T = 293 K, R = 0.0495 for 4168 observed reflexions. The X-ray analysis has revealed a trans-H-Ru- $P(CH_2)Me_2$ moiety within the title complex, the overall geometry of which corresponds to distorted cis-octahedral. The Ru-P bond lengths vary considerably $[2 \cdot 217 (2) - 2 \cdot 343 (2) \text{ Å}]$ and the Ru-Cl distance is 2.532 (2) Å.

Introduction. Ru(Cl)(H)[P(CH₂CH₂CH₂PMe₂)₃] was prepared according to Antberg & Dahlenburg (1986). Since it was not possible from ¹H and ³¹P NMR spectra to deduce whether the hydride ligand was *trans* to the bridging P(CH₂-)₃ fragment or *trans* to one of the terminal Me₂P substituents, we decided to establish

this structural feature by means of a single-crystal diffraction study.

Experimental. Small, colourless crystals of the complex grew from hexane at room temperature, and a specimen of approximate dimensions $0.1 \times 0.1 \times 0.15$ mm was chosen for X-ray work. Syntex P2, diffractometer; graphite-monochromated Mo $K\alpha$ radiation: crystal data from single-crystal diffractometry using 14 medium-angle reflexions within the range $15 < 2\theta <$ 22°; collection of the intensity data by the $\theta/2\theta$ scan technique $(5 \le 2\theta \le 55^\circ, 0 \le h \le 12, -12 \le k \le 12,$ $-26 \le l \le 26$; no unusual variation of intensity for three checks measured every 100 reflexions. 8323 data obtained, 5043 independent ($R_{int} = 0.0163$), 4168 considered observed $[|F_{a}| > 4\sigma(F_{a})]$. Lorentz and polarization corrections, no absorption correction. Laue symmetry $(\bar{3})$ and systematic absences (00/ with $l \neq 3n$) compatible with space group $P3_1$ or its enantiomorph $P3_2$. Structure solved by heavy-atom method and initially refined in $P3_1$ by full-matrix leastsquares procedures on F assigning anisotropic thermal

© 1986 International Union of Crystallography

^{*} Part XVII: Pietsch & Dahlenburg (1986).

[†] Author to whom all correspondence should be addressed.

behaviour to all nonhydrogen atoms. Hydride ligand located on final difference maps and included in the refinement scheme with its positional and isotropic thermal parameters being varied. C-bonded H atoms placed on calculated positions assigning ideal geometry and a C-H distance of 0.96 Å. Convergence at R = 0.0514 and wR = 0.0584. The alternative space group $P3_2$ gave the marginally lower residuals R = 0.0495 and wR = 0.0559, and was thus preferred. Ratio of observations to number of variables >20; function minimized $\sum w(|F_{c}| - |F_{c}|)^{2}$ with weights $w = (\sigma^2 |F_o| + 0.0011 |F_o|^2)^{-1}$. Maximum shift/e.s.d. in final cycle 0.04, maximum height on final difference map $0.8 \text{ e} \text{ Å}^{-3}$. Computer program SHELX (Sheldrick, 1976). Complex neutral-atom scattering factors from SHELX and, for Ru, from International Tables for X-ray Crystallography (1974).

Discussion. The final atomic parameters are given in Table 1, and selected bond lengths and angles in Table 2.* Fig. 1 shows the molecule, together with the atom-numbering scheme.

The complex adopts a considerably distorted pseudooctahedral coordination with the hydride ligand trans to one of the terminal Me₂P substituents of the tetrakis-(tertiary) phosphine. As a consequence of the different trans-bond weakening influences of the ligated H. P and Cl donors, the Ru-P bond lengths exhibit significant variations: trans-atom Cl 2.217 (2) trans-group PMe, 2.310 (2), and trans-ligand H 2.343 (2) Å. The Ru-Cl distance of 2.532 (2) Å is comparable with that found in RuCl₂[P(CH₂CH₂CH₂PMe₂)₃] for the Ru-Cl moiety *trans* to the bridging $P(CH_2-)_3$ group [2.521 (1) Å] (Antberg & Dahlenburg, 1986). The position of the hydride ligand is 1.38(12) Å from the metal atom. In view of the limited accuracy of this structural parameter it is difficult to compare the Ru-H bond distance of the complex under discussion with those of other hydro derivatives of Ru^{II}. For the structurally related inner coordination spheres of the dimer μ -[CH₂P(Me)CH₂CH₂PMe₂]₂[HRu(Me₂PCH₂-CH₂PMe₂)], the Ru-H separations amount to 1.47 (7) and 1.83 (7) Å (Cotton, Hunter & Frenz, 1975), whereas in the monomeric naphthyl compound, cis-Ru(H)(C₁₀H₇)(Me₂PCH₂CH₂PMe₂)₂, d(Ru-H)measures 1.7 Å (Gregory, Ibekwe, Kilbourn & Russell, 1971).

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie as well as by Degussa/Hanau.

Table 1. Positional and thermal parameters

 $U_{eq} = \frac{1}{3}$ (trace of the orthogonalized U_{ii} tensor).

	x	у	z	$U_{eq}(\dot{A}^2)$
Ru	1.00440 (5)	0.49795 (5)	1.00000 (0)	0.0305 (4)
P(1)	1.1948 (2)	0.7583 (2)	1.0005 (1)	0.0421 (18)
P(2)	0.7975 (2)	0.5173(2)	1.0475 (1)	0.0480 (18)
P(3)	0.8857 (3)	0.2351(2)	0.9746 (1)	0.0438 (18)
P(4)	1.0877 (2)	0.4719 (2)	1.1016 (1)	0.0412 (17)
Cl	0.9225 (3)	0.5222(3)	0.8802(1)	0.0545 (20)
C(11)	1.186 (1)	0.913 (1)	1.046 (1)	0.086 (14)
C(12)	1.247 (1)	0.848 (1)	0.916(1)	0.067 (11)
C(13)	1.386 (1)	0.787 (1)	1.025 (1)	0.103 (18)
C(14)	1.401 (1)	0.720 (2)	1.086(1)	0.083 (13)
C(15)	1.298 (1)	0.548 (1)	1.106(1)	0.066 (10)
C(21)	0.741 (1)	0.642(1)	1.001 (1)	0.091 (13)
C(22)	0.607(1)	0.346(1)	1.060(1)	0.071 (11)
C(23)	0.830(1)	0.604 (1)	1.133(1)	0.068 (10)
C(24)	0.887(1)	0.530(1)	1.186(1)	0.060 (9)
C(25)	1.055(1)	0.567 (1)	1.176 (1)	0.054 (8)
C(31)	0.698 (1)	0.140(1)	0.929(1)	0.069 (11)
C(32)	1.000 (1)	0.188 (1)	0.915(1)	0.084 (13)
C(33)	0.849 (1)	0.096 (1)	1.043 (1)	0.057 (9)
C(34)	0.986 (1)	0.146 (1)	1.092(1)	0.079 (12)
C(35)	1.013 (1)	0.276 (1)	1.140(1)	0.058 (8)
Н	1-116 (14)	0-489 (13)	0.961 (5)	0.10 (4)

Table 2. Selected bond lengths (Å) and angles (°)

P(1)-Ru	2.310 (2)	P(4)–Ru	2.217 (2)
P(2)—Ru	2.343 (2)	Cl-Ru	2.532 (2)
P(3)-Ru	2-310 (2)	H—Ru	1.38 (12)
P(2)-Ru-P(1)	99-5 (1)	Cl-Ru-P(3)	84-3 (1)
P(3)-Ru-P(1)	158-3 (1)	Cl-Ru-P(4)	175-9 (1)
P(3)-Ru- $P(2)$	101.8(1)	H-Ru-P(1)	81 (5)
P(4) - Ru - P(1)	89.0(1)	H-Ru-P(2)	170 (4)
P(4) - Ru - P(2)	92.5(1)	H-Ru-P(3)	78 (5)
P(4)-Ru-P(3)	94.1(1)	H - Ru - P(4)	97 (4)
CI—Ru—P(1)	91.1(1)	H-Ru-Cl	79 (4)
Cl-Ru-P(2)	91.5 (1)		

Fig. 1. SCHAKAL drawing (Keller, 1981) of the molecule $Ru(H)(Cl)[P(CH_2CH_2CH_2PMe_2)_3].$

^{*} Tables of structure factors, anisotropic thermal parameters, and H-atom positional and isotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42900 (27 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- ANTBERG, M. & DAHLENBURG, L. (1986). Inorg. Chim. Acta, 111, 73-76.
- COTTON, F. A., HUNTER, D. L. & FRENZ, B. A. (1975). Inorg. Chim. Acta, 15, 155-160.
- GREGORY, U. A., IBEKWE, S. D., KILBOURN, B. T. & RUSSELL, D. R. (1971). J. Chem. Soc. A, pp. 1118–1125.

Acta Cryst. (1986). C42, 999-1001

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- KELLER, E. (1981). SCHAKAL. Ein FORTRAN-Programm für die graphische Darstellung von Molekülmodellen. Univ. of Freiburg.
- PRETSCH, B. & DAHLENBURG, L. (1986). Acta Cryst. C42, 995-997.
- SHELDRICK, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.

Structure of Aqua[(1SR,4RS,8SR,11RS)-1,4,8,11-tetramethyl-1,4,8,11tetraazacyclotetradecane]copper(II) Perchlorate Monohydrate

BY TSONG-JEN LEE, TSENG-YUH LEE, CHING-YOU HONG, DER-THING WU AND CHUNG-SUN CHUNG

National Tsing Hua University, Hsinchu, Taiwan 300

(Received 9 January 1986; accepted 21 February 1986)

Abstract. $[Cu(C_{14}H_{32}N_4)(H_2O)](ClO_4)_2.H_2O, M_r = 554.91, monoclinic, P2_1/c, a = 9.784 (3), b = 14.081 (3), c = 16.958 (5) Å, \beta = 91.26 (3)^{\circ}, U = 2335.85 Å^3, Z = 4, D_x = 1.5785 Mg m^{-3}, Mo Ka, \lambda = 0.71069 Å, \mu = 1.258 mm^{-1}, F(000) = 1166.0, T = 296 (4) K, R(F) = 0.060 for 2240 observed reflections <math>[I > 3\sigma(I)]$. The coordination geometry about the Cu^{II} atom is a buckled square-based pyramid. This complex has the (1SR,4RS,8SR,11RS) configuration at the chiral N centers, with the four attached methyl groups on the same side of the macrocyclic plane. The two six-membered chelate rings exhibit a chair form, and the two five-membered rings take distorted eclipsed forms.

Introduction. Preparations of divalent transition-metal complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane (tmc) have been reported by Barefield & Wagner (1973). An X-ray structure determination of $[Ni(tmc)N_3]CIO_4$ prepared by combining the Ni¹¹ ion with the free ligand has shown that the macrocyclic ligand is coordinated in a planar fashion with all four methyl groups on the same side of the metal–nitrogen plane. In this work, the crystal structure of $[Cu(tmc)-H_2O](CIO_4)_2.H_2O$ obtained by direct interaction of the Cu¹¹ ion with tmc is reported.

Experimental. The tmc was prepared according to a previously described procedure (Barefield & Wagner, 1973). Aqueous solutions of $Cu(ClO_4)_2.6H_2O$ (1.8 g in 20 ml) and tmc (1.25 g in 30 ml) were mixed and the mixture was filtered. The blue solution was evaporated under a gentle stream of air to give dark-blue crystals. The single crystals used in the X-ray analysis were obtained by recrystallization from an aqueous solution

at room temperature, and were sealed in a capillary tube containing some moisture. The crystals thus grown are plate-like and blue and deteriorate gradually on exposure to the air.

Experimental data and structure solution parameters together with standard refinement procedures are listed in Table 1.

Table 1. Experimental data and structure-refinement parameters

Crystal size (mm)	$0.3 \times 0.3 \times 0.35$
Diffractometer and data-collection technique used	ω-2θ scan, four-circle diffractometer (Nonius CAD-4) with graphite monochromator
Scan width (2θ)	$2(0.7 + 0.35 \tan\theta)^{\circ}$
Number and θ range used for measuring lattice parameters	25 reflections with $11 < 2\theta < 20^{\circ}$
Absorption correction applied	Experimental absorption correction based on ψ scan (North, Phillips & Mathews, 1968)
Transmission factor	0.632
Max. $(\sin\theta)/\lambda$ in intensity measurement	0·5947 Å-'
Range of hkl	0,0,-23 to 5,19,23
Standard reflections and intensity variation	080, 449, 535; < 4%
Number of reflections measured	5741
Number of unique reflections	$2240 I > 3\sigma(I) $
Method used to solve the structure	Patterson and Fourier methods
Max. height in final difference Fourier synthesis	0·39 e Å ⁻³
Parameters refined, nonhydrogen atoms	Coordinates, occupancies and anisotropic temperature factors (281 parameters)
hydrogen atoms	Coordinates and isotropic temperature factor (144 parameters)
Quantity minimized	$\sum w(\Delta F)^2$; $w = 1/\sigma_F^2$
Atomic scattering factors, f' and f''	International Tables for X-ray Crystallography (1974)
Number of reflections per parameter	6
R(F) and wR	0.060 and 0.058
S	2.769
R _{int}	0.032
Average, max. Δ/σ	0.58, 0.96
Programs used	THUCP (Hsieh & Lee, 1985); XTAL83 (Stewart, Hall, Alden, Othof-Hazekamp, Doherty, Pagoaga & Norden, 1983); ORTEP11 (Johnson, 1976)
Computer	CDC Cyber-840 and IBM PC-XT

© 1986 International Union of Crystallography